
U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

3 Quality management metrics for software development

4 John S. Osmundsona,1, James B. Michaelb,*, Martin J. Machniakc,2,
5 Mary Alice Grossmand,3

6 aDepartment of Information Sciences, Naval Postgraduate School, CC/Os, 833 Dyer Road, Monterey, CA 93943, USA

7 bDepartment of Computer Science, Naval Postgraduate School, CS/Mj, 833 Dyer Road, Monterey, CA 93943, USA

8 cSpace and Naval Warfare Systems Center, OTC-2, Code 2334, 53560 Hull Street, San Diego, CA 92152, USA

9 dNASA Dryden Flight Research Center, P.O. Box 273, MS 4840A, Edwards, CA 93523, USA

10 Received 22 July 2001; received in revised form 15 April 2002; accepted 23 August 2002

11

12 Abstract

13

14 It can be argued that the quality of software management has an effect on the degree of success or failure of a software

15 development program. We have developed a metric for measuring the quality of software management along four dimensions:

16 requirements management, estimation/planning management, people management, and risk management. The quality manage-

17 ment metric (QMM) for a software development program manager is a composite score obtained using a questionnaire

18 administered to both the program manager and a sample of his or her peers. The QMM is intended to both characterize the

19 quality of software management and serve as a template for improving software management performance. We administered the

20 questionnaire to measure the performance of managers responsible for large software development programs within the US

21 Department of Defense (DOD). Informal verification and validation of the metric compared the QMM score to an overall

22 program-success score for the entire program; this resulted in a positive correlation.

23 # 2002 Published by Elsevier Science B.V.
24

25 Keywords: Metrics; Software management; Software process
26

27 1. Introduction

28 Quality of management has long been a concern

29 within the software engineering community. The term

30 ‘‘software crisis’’ was coined in the 1960s to refer to

31problems in developing software on time, within

32budget, and with the properties that the software

33was usable and actually used. The General Accounting

34Office reported in 1979 [23] that of the government

35software development projects studied:

� more than 50% had cost overruns;

� more than 60% had schedule overruns;

� more than 45% of the delivered software could not

39be used;

� more than 29% of the software contracted for was

41never delivered;

� more than 19% of the delivered software had to be

43reworked.

Information & Management 2033 (2002) 1–14

* Corresponding author. Tel.: þ1-831-656-2655;

fax: þ1-831-656-2814.

E-mail addresses: josmundson@nps.navy.mil (J.S. Osmundson),

bmichael@nps.navy.mil (J.B. Michael), machniak@spawar.navy.-

mil (M.J. Machniak), mary.grossman@mail.dfrc.nasa.gov (M.A.

Grossman).
1 Tel.: þ1-831-656-3775; fax: þ1-831-656-3679.
2 Tel.: þ1-619-524-3473; fax: þ1-619-524-3507.
3 Tel.: þ1-661-276-5531; fax: þ1-661-276-2792.

1 0378-7206/02/$ – see front matter # 2002 Published by Elsevier Science B.V.

2 PII: S 0 3 7 8 - 7 2 0 6 (0 2) 0 0 1 1 4 - 3

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

4445 Since that report was released, the software engi-

46 neering community has attempted to improve the

47 software development process. For example, the

48 well-known capability maturity model (CMM) iden-

49 tifies key practices required to improve organizations’

50 software development processes. The CMM was codi-

51 fied into five levels of increasing organizational matur-

52 ity levels. More recently a personal software process

53 (PSP) has been introduced, defining key practices

54 required to improve an individual’s software devel-

55 opment processes [11]. There is evidence that attain-

56 ing high levels of capability as defined by the CMM

57 has resulted in improvements in the management of

58 the development of software-based systems [3] and

59 further evidence has shown the potential benefits to be

60 derived by enacting a PSP [7].

61 The quality of software development management

62 tools has improved over the past 30 years. However,

63 many of the same challenges, such as keeping software

64 development projects on schedule and within budget,

65 remain today. The Standish Group report [9] in 1995

66 found that, on average, approximately 16% of software

67 projects were completed on time and within budget. In

68 large companies the record was even worse: only 9% of

69 the projects were completed on time and within budget.

70 Moreover, the projects that were completed contained

71 only approximately 42% of the originally proposed

72 features and functions. Also, US-based companies

73 and government agencies spent $ 81 billion for canceled

74 software projects and these same organizations paid an

75 additional $ 59 billion for software projects that were

76 completed, but exceeded their original time estimates.

77 According to Fabian-Isaacs and Robinson [5], ‘‘soft-

78 ware development projects are notorious for running

79 over budget and behind schedule’’. The Center for

80 Project Management in San Ramon, CA reported that

81 99%ofcommercialsoftwareproductsarenotcompleted

82 on time, within budget, or according to specifications,

83 and that the average project is underestimated by 285%.

84 CMM level-four compliance requires the develop-

85 ment organization to collect metrics that measure the

86 effectiveness of the development process, while CMM

87 level five requires that the organization use the metrics

88 continuously to improve its development process.

89 IEEE Standard 12207.0 and the earlier MIL-STD-

90 498 include metrics that might be gathered during

91 the software development process. Examples include

92 software size and complexity, software units devel-

93oped over time, milestone performance, and problem/

94change report status. Metrics are defined for the soft-

95ware development process and the software product

96but not for the quality of the project management. One

97can argue that in order to systematically go about

98improving the management of software projects, it is

99necessary to measure the quality of project manage-

100ment. Program-management tools have been devel-

101oped to assist the program manager in estimating the

102cost and schedule of software programs. However, the

103estimation tools available assume consistent and high-

104quality program management.

105One of the earliest and most widely used software

106project cost-estimation models is COCOMO [2]. The

107basic, intermediate, and detailed COCOMO models

108are based on the results of analyzing 63 software

109projects and applying regression analysis in order to

110predict software development cost as a function of

111software size and other factors. The intermediate and

112detailed COCOMO models take into account attri-

113butes of the software product, of the computer hard-

114ware, development personnel, and the project.

115Examples of project attributes include the use of

116software tools and the required development schedule.

117Intermediate cost estimates are based on the estimated

118number of lines of code (LOC) to be developed and

119then these estimates are adjusted by applying multi-

120pliers determined by rating the project with respect to

121the attributes. For example, a project completed under

122an accelerated schedule is estimated to cost more.

123However, COCOMO does not take into account the

124quality of project management.

125Boehm wrote, ‘‘poor management can increase

126software costs more rapidly than any other factor’’

127and ‘‘despite this cost variation COCOMO does not

128include a factor for management’s quality, but instead

129provides estimates which assume that the project will

130be well managed’’. Among the reasons Boehm gave

131for not including management quality was that man-

132agement quality ratings are not easy to determine.

133If the quality of the software program management

134were measurable and available as input to costing and

135scheduling tools, the resulting estimates could pin-

136point areas of software program management in which

137improvement needs to be made. Being able to measure

138the quality of management of software projects objec-

139tively allows development of more accurate cost

140models and would also provide a means for improving

2 J.S. Osmundson et al. / Information & Management 2033 (2002) 1–14

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

141 software project management through assessment,

142 feedback, and correction. In this paper, we introduce

143 such a metric that is repeatable, termed the quality

144 management metric (QMM) [16]. We also discuss the

145 informal and more formal validation of the metric.

146 The QMM is computed from the quantitative

147 answers to a structured set of inquiries, in a ques-

148 tionnaire consisting of two parts:

(1) a set of paired choices between statements that

150 reflected possible management actions on a soft-

151 ware program, and

(2) a set of questions requiring a yes, no, or not

153 applicable answer.
154

155 The questionnaire was designed to eliminate essay-

156 type answers and to minimize, as much as possible,

157 subjective assessments.

158 The questionnaire addresses four areas of software

159 management considered to be the most important:

160 requirements management, people management, risk

161 management, and planning/estimation management.

162 We assume that, collectively, measures in the four

163 areas can give an objective view of the quality of

164 software management for a specific software devel-

165 opment program. Thus, two programs scoring equally

166 on product and process metrics can be further mea-

167 sured and compared on the basis of the quality of their

168 management, thereby providing a more comprehen-

169 sive look at a software program.

170 2. Requirements management

171 The management of requirements is an important

172 measure of the quality of program management. Con-

173 straints can be in the form of mandates to employ a

174 certain development process, a selected architecture,

175 or by a predetermined set of requirements.

176 The program manager must identify and ensure that

177 all major stakeholders are involved in the initial

178 elicitation and articulation of software requirements.

179 Failure to include all parties at the start will most

180 likely spell trouble down the line [25]. McConnell [21]

181 refers to the product specification as the software

182 program’s ‘‘compass’’:

183 . . .without one, you can perform the work of

184 Hercules and still not produce a working product

185because the work in aggregation hasn’t been

186aimed in any particular direction. Without good

187direction, any individual’s work can go the

188wrong direction and different people can work

189at cross-purposes.

190

191Program managers can regard requirements as the

192contract between the developer and the customer on a

193program, and manage the customer’s expectations by

194managing the requirements [14].

195Requirements management focuses on managing

196the process of extracting, developing, defining, and

197refining the requirements of a software program [1].

198Product and process metrics do exist [10]. Davis and

199Leffingwell [4] state that requirements are capabilities

200and objectives to which software must conform and

201are the common thread for all development (and

202maintenance) activities. Requirements management

203is the process of eliciting, documenting, organizing,

204and tracking changing requirements and communicat-

205ing this information across the project team. Imple-

206menting (quality) requirements management ensures

207that iterative and unanticipated changes are main-

208tained throughout the project lifecycle.

209Quality management of a program’s requirements

210must establish procedures and structure to ensure that

211requirements specifications are complete, consistent,

212readable, unambiguous, traceable to their origin, and

213do not arbitrarily contain design stipulation. Each

214requirement should be a singular idea. Good manage-

215ment addresses the requirement attributes, including

216the following: managing customer benefit, the require-

217ments author and/or responsible parties, the corre-

218sponding effort, the development priority, rationale,

219and relationships to other requirements. The effort in

220tracking status, dates, and versions also is a determi-

221nate of quality management.

222A quality program manager will, among other

223things, facilitate the user/customer needs into require-

224ments that can be implemented. This process happens

225in one of the two ways. The first is the direct proce-

226dure. Users convey in any number of ways their needs

227to program management, which in turn develops the

228formal requirements to which the developers code. In

229the indirect procedure, the users convey their needs

230directly to the development team, which in turn devel-

231ops prototypes that the users can validate prior to

232detailed design, coding, and testing. Program manage-

J.S. Osmundson et al. / Information & Management 2033 (2002) 1–14 3

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

233 ment adjudicates between user and developer during

234 the indirect process and assists in the specification of

235 formal requirements. However, the formal require-

236 ments serve mainly as a record of what has been

237 performed [15].

238 Although these tools enable one to build lists of

239 requirements, it is the responsibility of the program

240 manager to establish requirements prioritization [26];

241 this is typically derived from tradeoff analyses that

242 take into consideration the level of availability of

243 various resources, such as the development experi-

244 ence of the software development team, project bud-

245 get, time allotted to complete the project, and

246 availability of software development tools and reu-

247 sable components. Identifying all the requirements

248 upfront and then developing the product is idealistic

249 in today’s software environment. Requirements

250 change for many reasons [8]. It is the program man-

251 ager’s responsibility to establish controls such as a

252 change-and-configuration management (CCM) pro-

253 cess. CCM helps direct and coordinate those changes

254 so they can enhance, rather than hinder software

255 development. The CCM procedures must be easy to

256 understand and consistent. It is well documented that

257 time and cost increase almost exponentially when

258 requirements are changed late in the development

259 process. The program manager must choose to

260 ‘‘freeze’’ requirements at some point, but establish

261 the framework for a follow-on version release or

262 block any upgrade: unlike most durable goods, soft-

263 ware systems are ever changing.

264 3. Estimation/planning management

265 Estimations are the basis from which planning is

266 performed on a program [13]. Planning a software

267 product development requires a frame of reference and

268 an ability to measure against it. The program manager

269 has three major measures with which to estimate the

270 program: products, processes, and resources [22].

271 Product measures generally refer to volume, such as

272 LOC. The measure can be the whole product or

273 various elements, such as modules, components, or

274 manuals. Measurement is accomplished by phase,

275 such as the amount of code produced in the imple-

276 mentation phase or the LOC changed during unit

277 testing. Measures of other product attributes might

278include system throughput, cyclomatic complexity,

279module coupling, and function points (FP). Process

280measures quantify behavior, strategies, and execution

281of the process used to develop the product. One

282general category of process measures is event counts,

283such as the number of defects found in test, require-

284ment changes, or milestones met. Another general

285category concerns time measures, such as cycle time:

286time to complete a project. In highly competitive

287markets, cycle time, or deployment, may be more

288important than reducing development costs.

289Resource measures refer specifically to labor hours

290required for product development. Monetary cost

291typically becomes an estimated outcome from pro-

292cess, product, and resource measures. Estimation uti-

293lizing all three measures can be used for planning

294schedules and costs. Subsequent tracking of metrics

295throughout the program will aid program updates and

296provide a basis for planning future programs. For

297example, program management can use work break-

298down structures as a tool to identify and track impor-

299tant tasks, milestones, and deliverables throughout the

300program and life cycle of a software-based system.

301Once initial costs and schedules are derived from

302estimations, progress tracking and schedule-and-cost

303adjusting become key factors in the success of the

304software development program.

305Establishing and tracking earned value is recom-

306mended as a way to measure program progress. By

307assigning value to a developer’s work package, its

308current cumulative value can be compared to the

309estimated and actual cost to complete to give a more

310accurate measure of schedule-and-cost progress. The

311program manager must set up a structure to use

312product, process, and resource measures in a software

313program, and it is the program manager’s responsi-

314bility to ensure that the measure being used will yield

315the most accurate and useful results.

3164. People management

317If one person could perform all the software devel-

318opment tasks, there would be no need for the manage-

319ment of people. How management recruits, organizes,

320and treats human resources is instrumental to the

321success or failure of any endeavor. Software develop-

322ment is an intellectual activity that requires creative

4 J.S. Osmundson et al. / Information & Management 2033 (2002) 1–14

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

323 problem solving before and during the application of

324 software processes, methodologies, and tools. People

325 management encompasses not only such issues as the

326 program manager’s ability to allocate human

327 resources and ensure an appropriate work environ-

328 ment, but it also requires communication and leader-

329 ship, including the structure for communication and

330 mentoring for the entire program. The QMM is

331 intended to examine questions such as: does the

332 management create the proper environment through

333 good working conditions and an appropriate reward

334 structure?

335 5. Risk management

336 An overarching theme that runs through each of

337 these sections is risk management. Ultimately, it is the

338 management’s ability to identify and manage high-

339 risk elements early in the process; this will have an

340 impact on the success or failure of a software program

341 [24]. We define risk exposure as the product of the

342 probability of an unwanted event and the loss experi-

343 enced if the event occurs. Such problems might have

344 an adverse impact on the cost, schedule, or technical

345 success of the program; the quality of products; or

346 team morale. Because non-trivial software develop-

347 ment programs typically do not run as planned, every

348 software program carries with it some degree of risk

349 [12]. Therefore, requirements, estimation/planning,

350 and people management all engender some level of

351 risk. Risk management is the process of identifying,

352 addressing, and mitigating the effects of unwanted

353 events. It is critical in measuring the management

354 quality of a software program.

355 The cost of managing risk is relatively low at the

356 start, but increases as the program progresses. The

357 factor takes into account any structure that promotes

358 success in the software development environment by

359 considering individual risks, assessing individual

360 impact, determining a probability of occurrence,

361 and planning a mitigation strategy. Program manage-

362 ment’s judgments within the established structures

363 will vary, and can ultimately determine the success

364 or failure of a risk-management effort. However, the

365 establishment of structure dedicated to these practices

366 can be objectively measured and provide an indication

367 of the quality of program management.

3686. The QMM questionnaire

369The approach used to develop the QMM included

370searching the literature, interviewing senior program

371managers, and conducting focus group meetings.

372Focus groups (generally with 4–12 individuals per

373session) consisted of a wide range of government and

374private industry software professionals each involved

375with or previously involved with US Department of

376Defense (DOD) software development projects. Indi-

377vidual experience was from 2 to over 20 years. Soft-

378ware categories ranged from program managers to

379programmers. The predominant software language

380experience was in Ada, C, and Cþþ. However, many

381participants had experience with other languages and

382other software projects outside DOD. Sessions were

383conducted with facilitators, structured to maintain

384focus on the issues, and with care to avoid bias of

385the outcomes.

386The QMM measures the quality of management for

387and in a specific software program. The overall goal

388was to develop an objective, standardized metric to

389which program management could be compared and

390ranked, thus providing a baseline for quantifying

391improvement. This metric compares the same man-

392agement on different software programs or at different

393times during the same program. Metric development

394is difficult, because the quality of management may

395be very subjective. Words that prompt subjective

396responses, such as ‘‘feel’’, ‘‘think’’, and ‘‘believe’’,

397were avoided as much as possible in the QMM ques-

398tionnaire. Answers were constrained to enable scoring

399to a scale.

400Part one of the questionnaire contains pair choice

401questions. The person filling out the questionnaire

402must choose one of the two statements that best

403described their program. The choice did not have to

404match exactly; it should just be the closest. Each pair

405statement represented two differing ideas in order to

406ascertain a tendency of the individual. Often the pair

407choices were repeated with different wording to con-

408firm earlier choices and measure the strength of the

409tendency. The survey format, with the proper mix of

410questions and repetitions, was intended to be used for

411reaching consensus on issues and to measure the

412strength of tendencies. Each section had a maximum

413score of 70 points. The risk, estimation/planning, and

414people management sections had 70 questions each.

J.S. Osmundson et al. / Information & Management 2033 (2002) 1–14 5

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

415 The requirements management section had 50 ques-

416 tions and included an alternate block of 16 questions

417 depending on the software development strategy used.

418 Part two of each questionnaire consisted of yes–no–

419 n/a (n/a: not available) questions. Instead of asking

420 open-ended questions that participants could answer

421 in a variety of ways in essay form, this format stan-

422 dardizes the responses for easier comparison. It is

423 user-friendly for conducting surveys, requiring mini-

424 mum writing by the participant. Each yes, no, or n/a

425 choice has an associated point value, based on the

426 relative importance of the question. The use of the ‘‘n/

427 a’’ box was discouraged. However, it was used in cases

428 in which the program manager did not have direct

429 control over the issue that was raised in the question.

430 For example, a government program manager may not

431 have direct hire/fire authority over development per-

432 sonnel. Thus, if the survey question asked whether the

433 program manager has direct hire/fire authority over

434 the personnel, the appropriate answer would be n/a,

435 because it allowed the interviewee to indicate that the

436 program manager is constrained and thus does not

437 penalize the program manager for factors beyond his

438 or her control.

439 Each section had a maximum value of 62 points.

440 The estimation/planning, people, and risk-manage-

441 ment sections had 50 questions each. The requirement

442 section had 47, including an alternative block of 6

443 questions, depending on the development strategy

444 used. The complete survey, including both parts for

445 all four sections, contained 457 questions.

446 The choice of this questionnaire format sought to

447 dissect complex decisions into their basic components

448 of choice. Objectively evaluating and comparing over-

449 arching program structures and policies required a

450 survey that identified and evaluated the basic level of

451 decisions in all relevant aspects of software manage-

452 ment. To avoid any pre-bias tendency of one response

453 over another, administration of the questionnaire was

454 conducted so that the subject was unaware of the point

455 value of each response.

456 The questionnaire for the management of require-

457 ments evaluated the program manager on establish-

458 ment of procedures. These questions did not seek to

459 determine the quality of judgments on any specific

460 decision. The thrust of the questions was to establish

461 the structure, if any, laid out by the program manager

462 in the area of requirements. Examples of requirements

463pair choice selection questions were the following,

464where the interview subject was asked to mark the box

465of the most appropriate answer:

466The estimation/planning management section did not

467seek to choose or require a specific estimation tech-

468nique. This area sought to quantify the management

469effort of the estimation process. The questions

470address whether the choice of an estimation technique

471was appropriate and how well that technique was

472implemented. Examples of estimation/planning man-

473agement pair choice selection and yes–no–n/a ques-

474tions are:

475Because people management encompasses many dis-

476tinct areas, each of which was highly weighted in

477importance, the questionnaire was divided into four

478subsections: human resources, leadership, communi-

479cation, and technical competency. The leadership

480questions reflected the personal leadership skills

481exhibited and the leadership mentoring provided by

482the program manager. The communication questions

483sought to ascertain the communication protocols set

484up for the program organization and used individually

485by the program manager.

Formal requirements list Informal requirements

list

Requirements taken

as is from customer

Look to reformulate,

interview in-depth, or

otherwise re-validate

Estimates by

algorithmic methods

Estimates by analogy

Management only

on estimations

All team members

involved in estimation

process

Yes No n/a

Code reviews planned

in schedule

Work breakdown

structure developed

6 J.S. Osmundson et al. / Information & Management 2033 (2002) 1–14

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

486 Examples of people management pair choice selec-

487 tion and yes–no–n/a questions are:

488 The questionnaire also was used to ascertain the

489 structures used by program management for identifi-

490 cation, monitoring, and managing risk. The questions

491 determined whether the program manager had set in

492 place strategies and personnel to implement risk

493 assessment, explore, and prioritize all reasonable

494 risks. Does the program manager have an active

495 risk-management program and established procedures

496 to monitor the risks and update the plan? The goal was

497 to ensure that the program manager had, for each

498 identified risk, an integrated mitigation strategy.

499 Examples of risk-management pair choice selection

500 and yes–no–n/a questions are:

501 It is difficult to measure individual judgments about

502 risk management. What can be measured is whether

503 the program manager has performed risk-management

504 elements.

5057. Methodology and scoring

506The methodology is illustrated in Fig. 1. The QMM

507survey instrument was administered to selected pro-

508gram managers and software developers. Raw QMM

509scores were weighted, converted to a 1–10 scale, and

510then compared to subjective success scores estimated

511for the same programs by the same survey subjects.

512The point totals from each of the two questionnaire

513parts per section were entered on the QMM Summary

514Score Sheet. Point totals for part one and part two were

515then added together to determine the total points for

516each section. These were multiplied by their relative

517Importance Coefficient (IC) to yield a weighted score.

518After weighted scores were determined for each of the

519four sections, they were summed together to yield the

520QMM score.

521The IC was determined from the relative rankings of

522importance of each of the sections. Experienced soft-

523ware professionals provided the data to determine the

524IC through the focus groups [17,19] and one-on-one

Keep people

well informed

Only as much knowledge

as necessary for their work

Coders notebook,

weekly

accomplishment

reports required

Not required

Yes No n/a

PM is accessible in person

by each team member

PM attempts to motivate

individuals on the

program team

Risk management is

formal and documented

Risk management is

informal, if at all

Risk status tracked Not tracked

Yes No n/a

Risk management is

formal and documented

Risks are tracked

Fig. 1. QMM survey instrument methodology.

J.S. Osmundson et al. / Information & Management 2033 (2002) 1–14 7

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

525 interviews [18,20] only after thorough explanation and

526 understanding of each category.

527 The QMM equation is given in Eq. (1):
528

QMM ¼ 0:92RqM þ 0:67EPM þ 0:55RkM þ 1:86PM

(1)
530

531 where RqM is the requirements management metric

532 score, EPM the estimation/planning metric score,

533 RkM the risk-management metric score, and PM is

534 the people management metric score.

535 The QMM ranges from 528 points to �130.9, as

536 part two contained negative point response values. The

537 QMM percentage score is a derived measure of the

538 QMM score. To obtain a QMM score scaled from 1 to

539 10, the survey minimum possible score was normal-

540 ized to 0: 130.9 was added to the survey minimum

541 possible score. Correspondingly, this was also added

542 to both the survey maximum QMM score and to the

543 actual QMM score obtained. The normalized QMM

544 score obtained from the survey was then divided by the

545 normalized survey maximum possible QMM score of

546 659 and then multiplied by 10.

547 Once the survey was completed, the interviewees

548 were asked to rate the success of the program at the

549 point in time when the program was being evaluated,

550 using a scale of 0–10. To assist the interviewees in

551 visualizing the scale, the interviewer drew and labeled

552 a scale (as shown in Fig. 2) and the interviewees were

553 asked to place an ‘‘X’’ at the place that represented the

554 success of the program at this point in time. Next the

555 interviewer asked the interviewee for a numerical

556 value to associate with the ‘‘X’’ on the scale. Zero

557 was defined as abject program failure with no worth-

558 while product. Ten was defined as an absolutely

559 perfect software product with flawless program execu-

560 tion.

561 The survey participant’s QMM score was compared

562 to his or her individual overall success score and to the

563 mean overall success score of the program. The goal

564was to determine any correlation between the parti-

565cipants’ QMM score, their individual success ranking

566of the overall program, and the mean success ranking

567of the overall program.

5688. Informal QMM validation

569Three software programs were evaluated during

5701999 at the US Space and Naval Warfare (SPAWAR)

571Systems Center. The program manager and one pro-

572gram development team member evaluated program

573A, the program manager and two program develop-

574ment team members evaluated program B, and the

575program manager and one program team member

576evaluated program C.

577Table 1 summarizes the resultant scores of the three

578programs. The subscript ‘‘PM’’ indicates the program

579manager’s survey results and the number in subscript

580indicates a participant’s survey results other than the

581program manager. The mean success score of a pro-

582gram includes the individual success ranking scores by

583the individuals participating in the survey and others

584associated with the program in some way in which

585they can judge the success of the program.

586Although there is a strong overall correlation

587between QMM scores to success scores, as shown

588in Table 2 there is a negative correlation between the

589program managers’ assessments and those of the

590developers. There are strong correlations for program

591manager QMM scores to program manager success

592scores and a similar strong correlation for correspond-

593ing developer scores, but weak or negative correla-

594tions between program manager and developer

595assessments; this was due to the effect of the assess-

596ment of the manager of program B within the small

597sample set.

598The summary sheets for program A revealed a weak

599risk-management section, but overall the program was

600highly structured and enjoyed good technical success

601with its deliverables. Program C was a smaller pro-

602gram that was relatively unstructured, with essentially

603no risk management, little planning and poor require-

604ment extraction. However, the program delivered a

605usable product, due to strong practices in the people

606management portion and a technology that was rela-

607tively straightforward. Program B exhibits a signifi-

608cant divergence from the scores of the programFig. 2. Overall program score scale.

8 J.S. Osmundson et al. / Information & Management 2033 (2002) 1–14

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

609 manager and the other team members. This program

610 appeared to have a dichotomy in perception, and

611 further interviews with others in the program indi-

612 cated that there were significant management issues

613 that needed to be resolved. The overall conclusion of

614 the informal validation was that the QMM had pro-

615 mise of being a valid approach to developing a quality

616 management metric, and that further study was war-

617 ranted.

618 9. Extended QMM validation

619 The QMM survey instrument was subsequently used

620 by Grossman [6] to extend the informal validation by

621 measuring the performance of 10 program managers on

622 US DOD software development programs. These 10

623 were asked to complete the QMM questionnaire and, in

624 addition, the survey instrument was given to one to two

625 members of the development team who were knowl-

626 edgeable about the overall practices and success of each

627 of the programs. A requirement for choosing the indi-

628 vidual development team members was that they had a

629 good understanding of the overall program and were

630 knowledgeable about the management practices and

631 infrastructure implemented by the program manager

632 throughout the program. We tried to choose individuals

633whose experience was not limited to specific areas of

634the program.

635The program manager was asked to determine a

636specific point in time on the program, such as a

637milestone or delivery, for the evaluation of the pro-

638gram management and to define it so that the indivi-

639dual development team members would be able to

640identify the time that was selected in order to be able to

641evaluate the program for that same point. The survey

642instrument was applied to the interviewees in one of

643two ways: one-on-one personal interview that lasted

644approximately 2 h or via an electronic copy distributed

645and returned by electronic mail. In 8 of the 10 pro-

646grams (17 surveys in total) the survey instrument was

647applied in personal interviews; in the remaining two,

648H and J (four surveys total), the survey instrument was

649applied through electronic mail. The interviewer also

650asked the interviewee for feedback on the survey

651instrument itself. For example, they were asked:

� Were there any questions that did not make sense?

� Were there words that the interviewee did not

654understand?

� Was the survey instrument too long?

� How would they improve the survey instrument?

� What was their overall impression of the survey

658instrument?
659

660This feedback was collected to determine the level of

661frustration that the survey induced in the interviewee

662and to provide glimpses into the viability of the survey

663instrument for future improvements. In order to

664encourage complete and open participation in the

665QMM survey, the interviewees were assured at the

666beginning of the survey process that the results would

667be reported anonymously. To this end, the program

668data reported here is reported as program A, B, C, etc.

669The minimum time required for completing the survey

Table 1

Results of informal QMM validation

Program A Program B Program C

Participant

APM

Participant

A1

Participant

BPM

Participant

B1

Participant

B2

Participant

CPM

Participant

C1

QMM score 338 322 386 106 47 198 189

QMM score (0–10) 7.12 6.88 7.85 3.59 2.70 4.99 4.86

Success score (0–10) 7 7 9 4 3 4 4

Mean success score 7 4 4

Table 2

Correlations of data from informal validation

Score

Dev. QMM PM success Dev. success

PM QMM score �0.20 0.99 0.14

Dev. QMM score �0.35 0.94

PM success score �0.02

J.S. Osmundson et al. / Information & Management 2033 (2002) 1–14 9

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

670 instrument in a personal interview was 1 h; the aver-

671 age time required to complete the survey instrument

672 was 2 h and the longest time was 4 h.

673 Figs. 3 and 4 provide information about the char-

674 acteristics of the US DOD projects included in the

675 extended QMM validation.

676 Results of program managers’ assessments are

677 summarized in Table 3. The first column gives the

678program-identifying letter, the second column gives

679each program manager’s subjective score on a 0–10

680scale, and the third column gives the program man-

681ager’s total QMM score, translated to a 0–10 scale.

682Table 4 gives the equivalent set of scores for the

683individual developers (IND).

684The data was examined to determine if there were

685any obvious trends. The possibility of the program

Fig. 3. Size of programs surveyed.

Fig. 4. Time frame of programs surveyed.

10 J.S. Osmundson et al. / Information & Management 2033 (2002) 1–14

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

686 managers consistently rating the success of the pro-

687 gram higher than the corresponding QMM percentage

688 score was not found in the data. In one instance,

689 program A, the program manager rated the program

690 overall far higher than the QMM percentage score, the

691 individual development team member overall program

692 score, and the QMM percentage score. The survey

693 results obtained from program F were contrary to our

694 expectations. It did not utilize many of the currently

695 accepted software engineering management processes

696 and procedures, such as formal risk management.

697 Thus, we expected the ranking of the success of this

698 program to be low. On the contrary, the program was

699ranked as highly successful by the software developers

700and the customers with an overall program-success

701score of 9.0, yet the QMM percentage score consis-

702tently ranked the program as a 5.4. The exciting part of

703the discovery is that it appears that the QMM survey

704instrument does measure the successfulness of the

705implementation of currently accepted software engi-

706neering management practices as defined by Mach-

707niak.

708In programs C, I, and J, the program manager’s

709QMM percentage score was consistently higher than

710the program manager’s overall program-success score

711and the scores of the individual development team

712member in the areas of overall program-success score

713and QMM percentage score.

714Table 5 summarizes correlations of data from

715Tables 3 and 4. Correlations shown in parentheses

716are computed excluding program A where the pro-

717gram manager awarded a 9.9 subjective success

718score out of a possible 10. In general, the data shows

719positive correlations between subjective assessments

720of program-success and corresponding QMM scores,

721both for program managers and independent devel-

722opers. This is particularly true for the data set that

723excludes programs A and F, as they are outliers

724(discussed above). In this data set, the correlation

725for the program manager QMM scores to program-

726success scores is 0.89 and the corresponding correla-

727tion for the individual development team members is

7280.82. This strong correlation indicates the QMM

729survey instrument is producing good QMM percen-

730tage-score results.

73110. Conclusion

732Informal initial validation of the QMM indicated

733that the MM questionnaire showed a positive correla-

Table 3

Program manager (PM) QMM scores from extended QMM

validation

Program PM score

Program QMM Req.

Mgt.

Est.

Plan.

People

Mgt.

Risk

Mgt.

A 9.9 6.8 5.2 6.2 8.6 4.0

B 7.5 8.9 8.6 9.3 8.8 9.5

C 8 8.1 8.8 7.5 8.8 5.1

D 7 7.0 7.2 5.0 7.9 5.9

E 4 5.2 5.2 4.5 6.1 2.6

F 9 5.4 5.5 3.7 7.3 0.7

G 7 6.8 6.0 6.6 7.8 4.9

H 6 7.7 7.1 7.5 7.8 8.3

I 3 4.8 4.8 3.8 6.3 0.9

J 7 8.2 8.6 6.9 8.4 8.1

Table 4

Individual developer (IND) QMM scores from extended QMM

validation

Program IND score

Program QMM Req.

Mgt.

Est.

Plan.

People

Mgt.

Risk

Mgt.

A 7 5.7 6.2 5.1 5.6 5.1

B 8 8.7 8.6 9.0 8.5 9.0

C 5 6.4 8.2 4.0 7.8 1.7

D1 7 5.2 8.1 3.8 4.1 5.6

D2 7.5 7.7 8.0 9.3 6.5 8.9

E 6 6.5 6.6 6.8 6.6 5.2

F 9 5.4 7.0 3.5 5.8 3.3

G 8 7.0 6.7 6.7 8.1 4.3

H 6.5 7.7 6.9 7.5 7.9 8.4

I 3 2.6 3.2 2.2 2.5 1.1

J 7 6.3 7.7 7.2 5.7 4.3

Table 5

Extended validation data correlation

Score

Dev. QMM PM success Dev. success

PM QMM score 0.74 0.44 (0.53) 0.29

Dev QMM score 0.35 (0.49) 0.59

PM success score 0.68

J.S. Osmundson et al. / Information & Management 2033 (2002) 1–14 11

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

734 tion between QMM scores and observed program-

735 success, albeit over a very limited sample set.

736 Extended validation of the QMM showed a strong

737 correlation with the QMM percentage score and the

738 overall program score for both the program manager

739 and individual development team member data sets.

740 This indicated that the QMM survey instrument is a

741 viable method for measuring the quality of manage-

742 ment on a software development program for which

743 the management policies and procedures are the same

744 as or similar to the currently accepted software engi-

745 neering management practices. In the case where the

746 management practices and procedures are known to

747 diverge from the currently accepted practices, the

748 QMM survey instrument may be used to measure

749 the level to which the currently accepted practices

750 are implemented but will yield a lower QMM percen-

751 tage score and probably predict a lower success rate

752 for the program than the actual rate.

753 The QMM survey instrument may be useful in

754 detecting discrepancies between the program man-

755 ager’s and the individual team member’s perspectives

756 and understanding. When the program manager’s

757 QMM percentage score is consistently higher than

758 the overall program-success score and the QMM

759 percentages of the individual development team mem-

760 bers, it may indicate the program manager believes he

761 or she is implementing and successfully using more

762 software engineering management practices on the

763 program than are actually being implemented by

764 the development team.

765 As new metrics or ways to report metrics are

766 discovered, both the government and the contractor

767 have to tailor the standard metrics reporting to incor-

768 porate improvements; this ensures that the metrics set

769 remains as useful for management purposes as possi-

770 ble. Adjustment of the weighting of the questions

771 within each QMM section and among the QMM

772 sections may be required to focus the QMM survey

773 instrument on the areas which are the most important

774 in determining and measuring the quality of manage-

775 ment on a software development program. Lastly, the

776 total number of questions might be reduced if it is

777 determined that this is appropriate. Reducing the

778 number of questions on the survey instrument includes

779 examining tradeoffs related to the usefulness of the

780 survey instrument versus the ease of executing the

781 survey instrument if it is shorter in length.

782The QMM survey instrument currently has the

783limitation that it does not provide specific feedback

784guidance for the program managers. In fact, the QMM

785survey instrument measures the performance of the

786program manager at a high level and only provides

787feedback to the program manager to the level of their

788score in each of the four QMM sections: requirements

789management, estimation/planning management, peo-

790ple management, and risk management. There is

791currently no provision for providing more specific

792feedback to the program manager other than in the

793area of people management, which is made up of four

794subsections: human resources, communication, lea-

795dership, and technical competency.

796The QMM survey instrument appears to detect

797differences in perception between the program man-

798ager and the development team on which practices and

799procedures the program manager believes are imple-

800mented and working and the actual state of under-

801standing and implementation of the practices and

802procedures on the development-team level. The pro-

803gram manager feedback mechanism could include

804detection of areas where the perceptions of the pro-

805gram manager and the development team differ

806greatly and the information could be used to alert

807the program manager or the program manager’s man-

808agement trainer or mentor to the problem. Knowledge

809of areas of potential misunderstandings enables the

810program manager to begin working on opening up the

811communication channels to better guide the develop-

812ment team’s efforts and receive feedback on the

813processes and procedures which the program manager

814implements, enabling them to improve them.

815The QMM survey instrument results could also be

816used as an input into current program cost, risk, and

817schedule estimation models to improve the resultant

818estimations. Currently, these models do not incorpo-

819rate the quality of software development management

820as a factor other than to assume good management. As

821this assumption is not necessarily a good assumption,

822using the QMM results as input into the models may

823increase the accuracy of the estimation results.

References

825[1] A.T. Bahill, F. Dean, Discovering system requirements, in:

826A.P. Sage, W.B. Rouse (Eds.), Handbook of Systems

12 J.S. Osmundson et al. / Information & Management 2033 (2002) 1–14

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

827 Engineering and Management, Wiley, New York, 1997,

828 pp. 175–220.

829 [2] B.W. Boehm, Software Engineering Economics, Prentice-

830 Hall, Upper Saddle River, NJ, 1981.

831 [3] K.L. Butler, The economic benefits of software process

832 improvement, CrossTalk—Journal of Defense Software

833 Engineering 8 (7), 1995, pp. 14–17.

834 [4] A.M. Davis, D.A. Leffingwell, Making requirements man-

835 agement work for you, CrossTalk—Journal of Defense

836 Software Engineering 12 (4), 1999, pp. 11–13.

837 [5] C. Fabian-Isaacs, E. Robinson, The project management

838 puzzle, Software Development 7 (3), 1999, pp. S12–S16.

839 [6] M.A. Grossman, Validation of a quality management metric,

840 Masters thesis, Naval Postgraduate School, Monterey, CA,

841 September 2000.

842 [7] W. Hayes, J.W. Over, The personal software process: an

843 empirical study of the impact of PSP on individual engineers,

844 Technical report CMU/SEI-97-TR-001, Software Engineer-

845 ing Institute, Pittsburgh, PA, December 1997.

846 [8] J. Heberling, Software change management, Software

847 Development 7 (7), 1999, pp. S7–S11.

848 [9] Chaos, in: The Standish Group Report, Standish Group, West

849 Yarmouth, MA, 1995.

850 [10] W.S. Humphrey, A discipline for software engineering,

851 Addison-Wesley, Reading, MA, 1995.

852 [11] W.S. Humphrey, Using a defined and measured personal

853 software process, IEEE Software 13 (3), 1996, pp. 77–88.

854 [12] W. Keuffel, Planning for and mitigating risk, Software

855 Development 7 (9), 1999, pp. S1–S5.

856 [13] J.D. Launi, Creating a project plan, Software Development 7

857 (5), 1999, pp. S1–S6.

858 [14] M.J. Machniak, Interview with Capt. (USN, Ret.) L. Preston

859 Brooks Jr. of SAIC’s Advanced Information Technology

860 Group, 3 September 1999.

861 [15] M.J. Machniak, interview with Capt. (USN, ret.) Gerald

862 Nifontoff of Lockheed-Martin Corporation’s Undersea Sys-

863 tems Division, 7–8 September 1999.

864 [16] M.J. Machniak, Development of a quality management

865 metric (QMM) measuring software program management

866 quality, Master’s thesis, Naval Postgraduate School, Monter-

867 ey, CA, December 1999.

868 [17] M.J. Machniak, Software Program Management Focus Group

869 No. 2, SPAWAR Systems Center, San Diego, CA, October

870 1999.

871 [18] M.J. Machniak, interview with Ms. Julie Streets of JP

872 Training and Development Associates, 3 August 1999.

873 [19] M.J. Machniak, Software Program Management Focus Group

874 No. 1, SPAWAR Systems Center, San Diego, CA, 15 October

875 1999.

876 [20] M.J. Machniak, interview with Dr. John Pickering, organiza-

877 tional consultant, September 1999.

878 [21] S. McConnell, Software’s ten essentials, IEEE Software 14

879 (2), 1997, pp. 144.

880 [22] R.S. Pressman, A Manager’s Guide to Software Engineering,

881 McGraw-Hill, New York, 1993.

882 [23] Contracting for computer software development, FGMSD-

883 80.4, US General Accounting Office, Washington, DC, 1979.

884[24] K.E. Wiegers, Know your enemy: software risk management,

885Software Development 6 (10), 1998, pp. 38–42.

886[25] K.E. Wiegers, Automating requirements management, Soft-

887ware Development 7 (7), 1999, pp. S1–S6.

888[26] K.E. Wiegers, First things first: prioritizing requirements,

889Software Development 7 (9), 1999, pp. 48–53.

John S. Osmundson has done PhD in

physics in 1968 from University of

Maryland, USA. He is an associate

professor of information sciences at the

Naval Postgraduate School. His research

interests are software project manage-

ment including systematic methods for

assessing the quality of project manage-

ment, the systems engineering of net-

worked information systems, and

discrete-event modeling and simulation

of information systems. Prior to joining NPS he was a scientist,

chief systems engineer and systems engineering manager at

Lockheed Missiles and Space Company.

James B. Michael obtained PhD in

information technology in 1993 from

George Mason University, USA. He is

an associate professor of computer

science at the Naval Postgraduate

School. His research interests include

distributed computing, information op-

erations/warfare, and software engineer-

ing. He is a senior member of the

Institute of Electrical and Electronics

Engineers, and active in both the

Association for Computing Machinery and the International

Federation for Information Processing. He has held several

research appointments, most recently with the University of

California at Berkeley and Institut National de Recherche sur les

Transports et leur Sécurité.

Martin J. Machniak did MS in software

engineering in 1999 from Naval Post-

graduate School, USA. He is the head of

the Navigation and Low-Approach Land-

ing Systems Branch at the Space and

Naval Warfare Systems Center (SPA-

WAR), San Diego. His group provides

installation, maintenance, upgrade, and

development for various military and

commercial systems that require en route

information and precision-approach cap-

abilities. Prior to joining SPAWAR he was a product engineer with

Motorola. He currently leads a pilot program to implement Higher

Performance Organization principles for improving teamwork

culture and to obtain measurable improvement in areas such as

customer service response time and satisfaction.

J.S. Osmundson et al. / Information & Management 2033 (2002) 1–14 13

U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

Mary Alice Grossman has done MS in

software engineering in 2000 from

Naval Postgraduate School, USA. She

is an aerospace engineer with the

NASA Dryden Flight Research Center.

She is currently involved with the

development of the hardware-in-the-

loop flight control simulation for the C-17 Intelligent Flight

Controls program. She has also worked at Edwards Air Force

Base as an aerospace simulation engineer and as a program

manager for the Air Warfare Mission Simulation and the Flight

Simulator Modernization programs. She has extensive experi-

ence in software development and software program manage-

ment.

14 J.S. Osmundson et al. / Information & Management 2033 (2002) 1–14

	Quality management metrics for software development
	Introduction
	Requirements management
	Estimation/planning management
	People management
	Risk management
	The QMM questionnaire
	Methodology and scoring
	Informal QMM validation
	Extended QMM validation
	Conclusion
	References

